

Cloud Native Applications

Before the hands-on lab setup guide

February 2020

Information in this document, including URL and other Internet Web site references, is subject
to change without notice. Unless otherwise noted, the example companies, organizations,
products, domain names, e-mail addresses, logos, people, places, and events depicted herein
are fictitious, and no association with any real company, organization, product, domain name,
e-mail address, logo, person, place or event is intended or should be inferred. Complying with
all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you
any license to these patents, trademarks, copyrights, or other intellectual property.

The names of manufacturers, products, or URLs are provided for informational purposes only
and Microsoft makes no representations and warranties, either expressed, implied, or
statutory, regarding these manufacturers or the use of the products with any Microsoft
technologies. The inclusion of a manufacturer or product does not imply endorsement of
Microsoft of the manufacturer or product. Links may be provided to third party sites. Such sites
are not under the control of Microsoft and Microsoft is not responsible for the contents of any
linked site or any link contained in a linked site, or any changes or updates to such sites.
Microsoft is not responsible for webcasting or any other form of transmission received from
any linked site. Microsoft is providing these links to you only as a convenience, and the
inclusion of any link does not imply endorsement of Microsoft of the site or the products
contained therein.

© 2020 Microsoft Corporation. All rights reserved.

Contents

• Cloud-native applications before the hands-on lab setup guide

o Requirements

o Before the hands-on lab

• Task 1: Setup Azure Cloud Shell

• Task 2: Download Starter Files

• Task 3: Resource Group

• Task 4: Create an SSH key

• Task 5: Create a Service Principal

• Task 6: Deploy ARM Template

• Task 7: Setup Azure DevOps project

• Task 8: Connect securely to the build agent

• Task 9: Complete the build agent setup

• Task 10: Clone Repositories to the Build Agent

Cloud-native applications before the hands-on lab setup guide

Requirements
1. Microsoft Azure subscription must be pay-as-you-go or MSDN.

• Trial subscriptions will not work.

• To complete this lab setup (including Task 5: Create a Service Principal) ensure your
account includes the following:

o Has the Owner built-in role for the subscription you use.

o Is a Member user in the Azure AD tenant you use. (Guest users will not have
the necessary permissions).

 Note If you do not meet these requirements, ask another member user with
subscription owner rights to login to the portal and execute the task to create
the service principal.

• You must have enough cores available in your subscription to create the build agent
and Azure Kubernetes Service cluster in Task 6: Deploy ARM Template. You’ll need
eight cores if following the exact instructions in the lab, more if you choose
additional agents or larger VM sizes. Execute the steps required before the lab to
see if you need to request more cores in your sub.

2. An account in Azure DevOps.

3. Local machine or a virtual machine configured with:

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/users-default-permissions#member-and-guest-users

• A browser, preferably Chrome for consistency with the lab implementation tests.

4. You will be asked to install other tools throughout the exercises.

Before the hands-on lab

Duration: 1 hour

You should follow all of the steps provided in this section before taking part in the hands-on lab
ahead of time as some of these steps take time.

Task 1: Setup Azure Cloud Shell
1. Open a cloud shell by selecting the cloud shell icon in the menu bar.

 The cloud shell icon is highlighted on the menu bar.

2. The cloud shell opens in the browser window. Choose “Bash” if prompted or use the left-
hand dropdown on the shell menu bar to choose “Bash” (as shown).

 This is a screenshot of the cloud shell opened in a browser window. Bash was selected.

3. You should make sure to set your default subscription correctly. To view your current
subscription type:

 az account show

 In this screenshot of a Bash window, az account show has been typed and run at the
command prompt. Some subscription information is visible in the window, and some
information is obscured.

4. To list all of your subscriptions, type:

 az account list

 In this screenshot of a Bash window, az account list has been typed and run at the
command prompt. Some subscription information is visible in the window, and some
information is obscured.

5. To set your default subscription to something other than the current selection, type the
following, replacing {id} with the desired subscription id value:

 az account set --subscription {id}

Task 2: Download Starter Files

In this task, you use git to copy the lab content to your cloud shell so that the lab starter files
will be available.

Note: If you don’t have a cloud shell available, refer back to Task 1: Setup Azure Cloud
Shell.

1. Type the following command and press <ENTER>:

 git clone https://github.com/microsoft/MCW-Cloud-native-applications.git

2. The lab files download.

 In this screenshot of a Bash window, git clone has been typed and run at the command
prompt. The output from git clone is shown.

3. We do not need the .git folder, and later steps will be less complex if we remove it. Run
this command:

 rm -rf MCW-Cloud-native-applications/.git

Task 3: Resource Group

Create an Azure Resource Group to hold most of the resources that you create in this hands-on
lab. This approach makes it easier to clean up later.

1. In your cloud shell window, you type a command similar to the following command:

 Note: If you don’t have a cloud shell available, refer back to Task 1: Setup Azure Cloud
Shell.

 az group create -l [LOCATION] -n fabmedical-[SUFFIX]

• Suffix: Throughout the lab, suffix should be used to make resources unique, like your
email prefix or your first initial and last name.

• Location: Choose a region where all Azure Container Registry SKUs have to be
available, which is currently: Canada Central, Canada East, North Central US, Central
US, South Central US, East US, East US 2, West US, West US 2, West Central US,
France Central, UK South, UK West, North Europe, West Europe, Australia East,
Australia Southeast, Brazil South, Central India, South India, Japan East, Japan West,
Korea Central, Southeast Asia, East Asia, and remember this for future steps so that
the resources you create in Azure are all kept within the same region.

 Example:

 az group create -l westus -n fabmedical-sol

2. When this completes, the Azure Portal shows your Resource Group.

 In this screenshot of the Azure Portal, the fabmedical-sol Resource group is listed.

Task 4: Create an SSH key

You create VMs during the upcoming exercises. In this section, you create an SSH key to access
the VMs securely.

1. From the cloud shell command line, enter the following command to ensure that a
directory for the SSH keys exists. You can ignore any errors you see in the output.

 Note: If you don’t have a cloud shell available, refer back to Task 1: Setup Azure Cloud
Shell.

 mkdir .ssh

2. From the cloud shell command line, enter the following command to generate an SSH key
pair. You can replace “admin” with your preferred name or handle.

 ssh-keygen -t RSA -b 2048 -C admin@fabmedical

3. When asked to save the generated key to a file, enter .ssh/fabmedical for the name.

4. Enter a passphrase when prompted, and don’t forget it!

5. Because you entered “.ssh/fabmedical”, ssh-keygen generates the file in the “.ssh” folder
in your user folder, where the cloud shell opens by default.

 In this screenshot of the cloud shell window, ssh-keygen -t RSA -b 2048 -C
admin@fabmedical has been typed and run at the command prompt. Information about
the generated key appears in the window.

6. From the cloud shell command line, enter the following command to output the public key
content. Copy this information to use later.

 cat .ssh/fabmedical.pub

7. Keep this cloud shell open and remain in the default directory. You will use this shell in
later tasks.

 In this screenshot of the cloud shell window, cat .ssh/fabmedical has been typed and run at
the command prompt. Information about the public key content appears in the window.

Task 5: Create a Service Principal

Azure Kubernetes Service requires an Azure Active Directory service principal to interact with
Azure APIs. The service principal is needed to dynamically manage resources such as user-

defined routes and the Layer 4 Azure Load Balancer. The easiest way to set up the service
principal is by using the Azure cloud shell.

Note: To complete this task, ensure your account is an Owner built-in role for the
subscription you use and is a Member user in the Azure AD tenant you use. You may
have trouble creating a service principal if you do not meet these requirements.

1. To create a service principal, type the following command in the cloud shell command line,
replacing {id} with your subscription identifier, and replacing suffix with your chosen suffix
to make the name unique:

 Note: If you don’t have a cloud shell available, refer back to Task 1: Setup Azure Cloud
Shell.

 az ad sp create-for-rbac --role="Contributor" --scopes="/subscriptions/{i
d}" --name="http://Fabmedical-sp-{SUFFIX}"

2. The command produces output like this. Copy this information to use later.

 In this screenshot of a Bash window, az ad sp create-for-rbac –role=“Contributor” –
scopes=“/subscriptions/{id}” –name=“Fabmedical-sp-SUFFIX” has been typed and run at
the command prompt. Service principal information is visible in the window, but at this
time, we are unable to capture all of the information in the window. Future versions of this
course should address this.

3. To get the service principal object id, type the following command, replacing {appId} with
your service principal appId:

 az ad sp show --id {appId} --query "{objectId:@.objectId}"

4. The command produces output like this. Copy this information to use later.

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/users-default-permissions#member-and-guest-users

 In this screenshot of a Bash window, az ad sp show –id d41261a3-d8b8-4cf0-890d-
1fb6efc20a67 –query “{objectId:@.objectId}” has been typed and run at the command
prompt. Service Principal information is visible in the window.

Task 6: Deploy ARM Template

In this section, you configure and execute an ARM template that creates all the resources that
you need throughout the exercises.

1. In Azure cloud shell, switch to the ARM template directory:

 Note: If you don’t have a cloud shell available, refer back to Task 1: Setup Azure Cloud
Shell.

 cd MCW-Cloud-native-applications/Hands-on\ lab/arm/

2. Open the azuredeploy.parameters.json file for editing using Azure Cloud Shell editor.

 code azuredeploy.parameters.json

 This screenshot shows the online editor for azure could shell.

3. Update the values for the various keys so that they match your environment:

• Suffix: Enter a shortened version of your SUFFIX with a max of 3 chars.

• VirtualMachineAdminUsernameLinux: The Linux Build Agent VM admin username
(example: "adminfabmedical").

• VirtualMachineAdminPublicKeyLinux: The Linux Build Agent VM admin ssh public
key. You find this value in the .ssh/fabmedical.pub file created previously (example:
"ssh-rsa AAAAB3N(...)vPiybQV admin@fabmedical").

• KubernetesServicePrincipalClientId: The Kubernetes Cluster Service Principal Client
Id. Use the service principal “appId” from a previous step.

• KubernetesServicePrincipalClientSecret: The Kubernetes Cluster Service Principal
Client Secret. Use the service principal “password” from a previous step.

• KubernetesServicePrincipalObjectId: The Kubernetes Cluster Service Principal
Object Id. Use the service principal “objectId” from a previous step.

• CosmosLocation: The primary location of the Azure Cosmos DB. Use the same
location as the resource group previously created (example: "eastus").

• CosmosLocationName: The name of the primary location of the Azure Cosmos DB.
Use the name of the same location as the resource group previously created
(example: "East US").

• CosmosPairedLocation: The secondary location of the Azure Cosmos DB. Use a
location from the list below (example: "westus").

• CosmosPairedLocationName: The name of the secondary location of the Azure
Cosmos DB. Use the location name from the list below that matches the secondary
location defined in the previous key (example: "West US").

 Location Location Name

 canadacentral Canada Central

 canadaeast Canada East

 northcentralus North Central US

 centralus Central US

 southcentralus South Central US

 eastus East US

 eastus2 East US 2

 westus West US

 westus2 West US 2

 westcentralus West Central US

 francecentral France Central

 uksouth UK South

 ukwest UK West

 northeurope North Europe

 westeurope West Europe

 australiaeast Australia East

 australiasoutheast Australia Southeast

 brazilsouth Brazil South

 centralindia Central India

 southindia South India

 japaneast Japan East

 japanwest Japan West

 koreacentral Korea Central

 southeastasia Southeast Asia

 eastasia East Asia

4. Select the … button and select Save.

 In this screenshot of an Azure Cloud Shell editor window, the … button has been selected,
and the Save option is highlighted.

5. Select the … button again and select Close Editor.

 In this screenshot of the Azure Cloud Shell editor window, the … button has been selected,
and the Close Editor option is highlighted.

6. Create the needed resources by typing the following instruction (case sensitive), replacing
{resourceGroup} with the name of the previously created resource group:

 az deployment group create --resource-group {resourceGroup} --template-fi
le azuredeploy.json --parameters azuredeploy.parameters.json

 This command takes up to 30 to 60 minutes to deploy all lab resources. You can continue
to the next task to setup Azure DevOps while the deployment runs.

Task 7: Setup Azure DevOps project

FabMedical has provided starter files for you. They have taken a copy of the websites for their
customer Contoso Neuro and refactored it from a single node.js site into a website with a
content API that serves up the speakers and sessions. This refactored code is a starting point to
validate the containerization of their websites. Use this to help them complete a POC that
validates the development workflow for running the website and API as Docker containers and
managing them within the Azure Kubernetes Service environment.

1. Open a new Azure Cloud Shell console.

2. Navigate to the FabMedical source code folder and list the contents.

 cd ~/MCW-Cloud-native-applications/Hands-on\ lab/lab-files/developer/
ll

 Important note: If you will be taking the Infrastructure edition of the lab, instead of
using the above instructions, type the following ones:

 cd ~/MCW-Cloud-native-applications/Hands-on\ lab/lab-files/infrastructure
/
ll

 This will take you to the version of the starter files that will be used by that edition of
the lab.

3. You’ll see the listing includes three folders, one for the web site, another for the content
API and one to initialize API data:

 content-api/
content-init/
content-web/

4. Set your username and email, which git uses for commits.

 git config --global user.email "you@example.com"
git config --global user.name "Your Name"

5. Configure git CLI to cache your credentials, so that you don’t have to keep re-typing them.

 git config --global credential.helper cache

6. Open a new browser tab to visit Azure DevOps and log into your account.

 If you have never logged into this account, Azure DevOps takes you through a first-run
experience:

• Confirm your contact information and select next.

• Select “Create new account”.

• Enter a fabmedical-SUFFIX for your account name and select Continue.

7. Create an Azure DevOps Project.

• Enter fabmedical as the project name.

• Ensure the project is Private.

• Choose the “Advanced” dropdown.

• Ensure the Version control is set to Git.

• Select the “Create” button.

https://dev.azure.com/

 Create Project Dialog with an arrow pointing at the Create button

8. Enable multi-stage pipelines:

• Select your user icon in the top right corner.

• Then choose the three dots to access the “Preview Features” menu item.

• Toggle multi-stage pipelines to “On”.

9. Next, add an Azure Service Connection to your Azure DevOps account. Select the Project
settings gear icon to access your settings. Then select Service Connections.

10. Choose “+ New service connection”. Then pick “Azure Resource Manager” from the menu.

 A screenshot of the New service connection selection in Azure DevOps with Azure Resource
Manager highlighted.

11. Select the link indicated in the screenshot below to access the advanced settings.

 A screenshot of the Add Azure Resource Manager dialog where you can enter your
subscription information.

12. Enter the required information using the service principal information you created earlier.

• Connection name: azurecloud

• Environment: AzureCloud

• Scope Level: Subscription

• Subscription ID: Enter id from az account show output.

• Subscription name: Enter name from az account show output.

• Service principal client ID: Enter appId from service principal output.

• Service principal key: Enter password from service principal output.

• Tenant ID: Enter tenant from service principal output.

 A screenshot of the Add Resource Manager Add Service Endpoint dialog.

13. Select “Verify connection” then select “OK”.

 Note: If the connection does not verify, then recheck and reenter the required data.

14. Next, add another Azure Service Connection to your Azure DevOps account. Select the
Project settings gear icon to access your settings. Then choose Service Connections.

15. Choose “+ New service connection”. Then pick “Docker Registry” from the menu.

 A screenshot of the Add Docker Registry Service Connection dialog.

16. Enter the required information using the service principal information you created earlier.

• Environment: Azure Container Registry

• Connection name: Fabmedical ACR

• Azure Subscription: Choose the subscription you are using for the lab.

• Azure Container Registry: Choose the registry created for you by the ARM
deployment.

 A screenshot of the Add Docker Registry Service Connection dialog with the values entered
as described above.

17. Select “OK”.

18. Next, choose “Repos” then use the repository dropdown to create a new repository by
selecting “+ New repository”.

 The repository dropdown is displayed with the + New repository item selected.

– Enter “content-web” as the repository name.

– Once Azure DevOps creates the repository, select “Generate Git credentials”.

 The Clone to your computer section is displayed with the Generate Git Credentials button
selected.

19. Copy the Personal Access Token and save it for later steps.

20. Using your cloud shell window, initialize a new git repository for content-web.

 cd content-web
git init
git add .
git commit -m "Initial Commit"

21. Return to your Azure DevOps tab and copy the commands to add your Azure DevOps
repository as a new remote for push. Copy the commands for “HTTPS” similar to this
example:

 git remote add origin https://fabmedical-sol@dev.azure.com/fabmedical-sol
/fabmedical/_git/content-web
git push -u origin --all

22. Now use the commands copied from Azure DevOps to configure the remote repository
and push the code to Azure DevOps. When prompted for a password, paste your Azure
DevOps Personal Access Token you copied earlier in this task.

23. Return to Azure DevOps and use the repository dropdown to create a second repository
called content-api.

 Note: You do not need to generate git credentials again. The same PAT works for both
repositories.

24. Using your cloud shell window, initialize a new git repository in the content-api directory.

 cd ../content-api
git init
git add .
git commit -m "Initial Commit"

25. Copy the commands to add your content-api repository as a new remote for push. Copy the
commands for “HTTPS”.

26. Now use the commands copied from Azure DevOps to configure the remote repository
and push the code to Azure DevOps. If prompted for a password, paste your Azure DevOps
Personal Access Token you copied earlier in this task.

27. Use the repository drop down to create a third repository called content-init.

 Note: You do not need to generate git credentials again. The same PAT works for both
repositories.

28. Using your cloud shell window, initialize a new git repository in the content-init directory.

 cd ../content-init
git init
git add .
git commit -m "Initial Commit"

29. Copy the commands to add your content-init repository as a new remote for push. Copy the
commands for “HTTPS”.

30. Now use the commands copied from Azure DevOps to configure the remote repository
and push the code to Azure DevOps. If prompted for a password, paste your Azure DevOps
Personal Access Token you copied earlier in this task.

Task 8: Connect securely to the build agent

In this section, you validate that you can connect to the new build agent VM.

1. Open a new Azure Cloud Shell console and run the following command to find the IP
address for the build agent VM provisioned when you ran the ARM deployment:

 Note: If you don’t have a cloud shell available, refer back to Task 1: Setup Azure Cloud
Shell.

 az vm show -d -g fabmedical-[SUFFIX] -n fabmedical-[SHORT_SUFFIX] --query
publicIps -o tsv

 Example:

 az vm show -d -g fabmedical-sol -n fabmedical-SOL --query publicIps -o ts
v

2. In the cloud shell output, take note of the public IP address for the VM.

 The cloud shell window is displayed with the Public IP address shown.

3. Connect to the new VM you created by typing the following command:

 ssh -i [PRIVATEKEYNAME] [BUILDAGENTUSERNAME]@[BUILDAGENTIP]

 Replace the bracketed values in the command as follows:

– [PRIVATEKEYNAME]: Use the private key name “.ssh/fabmedical,” created above.

 ssh -i .ssh/fabmedical adminfabmedical@52.174.141.11

4. When asked to confirm if you want to connect, as the authenticity of the connection
cannot be validated, type “yes”.

5. When asked for the passphrase for the private key you created previously, enter this
value.

6. SSH connects to the VM and displays a command prompt such as the following. Keep this
cloud shell window open for the next step:

 adminfabmedical@fabmedical-SUFFIX:~$

 In this screenshot of a Cloud Shell window, ssh -i .ssh/fabmedical
adminfabmedical@52.174.141.11 has been typed and run at the command prompt. The
information detailed above appears in the window. At this time, we are unable to capture
all of the information in the window. Future versions of this course should address this.

Note: If you have issues connecting, you may have pasted the SSH public key
incorrectly in the ARM template. Unfortunately, if this is the case, you will have to
recreate the VM and try again.

Task 9: Complete the build agent setup

In this task, you update the packages and install the Docker engine.

1. Go to the cloud shell window that has the SSH connection open to the build agent VM.

2. Update the Ubuntu packages and install curl and support for repositories over HTTPS in a
single step by typing the following in a single line command. Respond by typing “Y” and
pressing enter, if asked if you would like to proceed.

 sudo apt-get update && sudo apt install apt-transport-https ca-certificat
es curl software-properties-common

3. Add Docker’s official GPG key by typing the following in a single line command:

 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key ad
d -

4. Add Docker’s stable repository to Ubuntu packages list by typing the following in a single
line command:

 sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/lin
ux/ubuntu $(lsb_release -cs) stable"

5. Add NodeJs PPA to use NodeJS LTS release and update the Ubuntu packages and install
Docker engine, node.js, and the node package manager by typing the following
commands, each on their own line. If asked if you would like to proceed, respond by typing
“Y” and pressing enter.

 sudo apt-get install curl python-software-properties

curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -

sudo apt-get update && sudo apt-get install -y docker-ce nodejs mongodb-c
lients

6. Now, upgrade the Ubuntu packages to the latest version by typing the following in a single
line command. If asked if you would like to proceed, respond by typing “Y” and pressing
enter.

 sudo apt-get upgrade

7. Install docker-compose

 sudo curl -L https://github.com/docker/compose/releases/download/1.21.2/d
ocker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

8. When the command has completed, check the Docker version installed by executing this
command. The output may look something like that shown in the following screenshot.
Note that the server version is not shown yet, because you didn’t run the command with
elevated privileges (to be addressed shortly).

 docker version

 In this screenshot of a Cloud Shell window, docker version has been typed and run at the
command prompt. Docker version information appears in the window.

9. You may check the versions of node.js and npm as well, just for information purposes,
using these commands:

 nodejs --version

npm -version

10. Install the Angular CLI.

 sudo npm install -g @angular/cli

11. To remove the requirement to use sudo, add your user to the Docker group. You can
ignore any errors you see in the output.

 sudo usermod -aG docker $USER

 In this screenshot of a Cloud Shell window, sudo usermod -aG docker $USER has been typed
and run at the command prompt. Errors appear in the window.

12. For the user permission changes to take effect, exit the SSH session by typing ‘exit’, then
press <Enter>. Reconnect to the build agent VM using SSH as you did in the previous task.

13. Repeat the Docker version command, and note the output now shows the server version
as well.

 In this screenshot of a Cloud Shell window, docker version has been typed and run at the
command prompt. Docker version information appears in the window, in addition to server
version information.

14. Run a few Docker commands:

– One to see if there are any containers presently running.

 docker container ls

– One to see if any containers exist, whether running or not.

 docker container ls -a

15. In both cases, you have an empty list but no errors while running the command. Your build
agent is ready with the Docker engine running correctly.

 In this screenshot of a Cloud Shell window, docker container ls has been typed and run at
the command prompt, as has the docker container ls -a command.

Task 10: Clone Repositories to the Build Agent

In this task, you clone your repositories from Azure DevOps so you can work with them on the
build agent.

1. As you previously did in cloud shell, set your username and email which are used for git
commits.

 git config --global user.email "you@example.com"
git config --global user.name "Your Name"

 Note: In some cases, the root user owns your user’s .config folder. If this happens, run
the following command to return ownership to adminfabmedical and then try the git
command again:

 sudo chown -R $USER:$(id -gn $USER) /home/adminfabmedical/.config

2. Configure git CLI to cache your credentials, so that you don’t have to keep re-typing them.

 git config --global credential.helper cache

 Note: In some cases, the root user owns your user’s .config folder. If this happens, run
the following command to return ownership to adminfabmedical and then try the git
command again:

 sudo chown -R $USER:$(id -gn $USER) /home/adminfabmedical/.config

3. Visit the content-web repository in Azure DevOps and select “Clone” in the right corner.

 The content-web repository page is displayed with the Clone button selected.

4. Copy the repository URL.

5. Use the repository URL to clone the content-web code to your build agent machine.

 git clone <REPOSITORY_URL>

 Note: In some cases, the root user owns your user’s .config folder. If this happens, run
the following command to return ownership to adminfabmedical and then try the git
command again:

 sudo chown -R $USER:$(id -gn $USER) /home/adminfabmedical/.config

6. When prompted for a password, use your PAT token from previous steps.

7. In your browser, switch to the content-api repository and select “Clone” to see and copy
the repository URL.

8. Use the repository URL and git clone to copy the content-api code to your build agent.

9. In your browser, switch to the content-init repository and select “Clone” to see and copy
the repository URL.

10. Use the repository URL and git clone to copy the content-init code to your build agent.

Note: Keep this cloud shell window open as your build agent SSH connection. The lab
instructs you to open additional cloud shell sessions as and when needed.

You should follow all steps provided before performing the Hands-on lab.

